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AMtract--A theory is proposeA which describes the transfer process of momentum and heat in a two-phase 
bubble flow in channels. The eddy diffusivity to express the turbulent structure of the liquid phase is 
subdivided into the two compoi,~ents, one for the inherent wall turbulence independent of bubble agitation 
and the other for the additional turbulence caused by bubbles. On the basis of the theory, the velocity 
profile and the frictional pressure tgradient for a given flow can be predicted when its void fraction profile is 
known. Furthermore, when a unifo~m heat flux is added to the system, its temperature distribution and heat 
transfer coet~cient can be determin~,d. A method for the numerical calculation of these parameters is also 
presented. 

1. INTRODUCTION 

Two-phase bubble flow is commonlv defined as a flow pattern in which the gas phase is 
distributed within a liquid continuunl in discrete bubbles smaller than the characteristic 
dimension of the channel (e.g. pipe rad'ius), and is encountered in a wide range of industrial 
plants such as steam generators, bubble columns, heat exchangers for liquified natural gas and 
various gas-liquid pipeline systems. Understanding of the flow mechanism of this regime is not 
yet entirely satisfactory though several m~odels have been presented concerning the cross- 
sectional velocity distribution: Bankoff (1960), Levy (1963), Brown & Kranich (1968) and 
Beattie (1972). 

To predict momentum and heat transfer process of bubble flow it is of importance to 
elucidate turbulent structure of the continuous liquid phase, which may result in how to 
describe the contribution of bubble existence to the flow characteristics. As a first step toward 
the flow structure modeling, the a0thors have proiposed an analysis of the momentum transfer 
in the previous study (Sato & Sekoguchi 1975), in which the turbulent shear stress in bubble 
flow is subdivided further into the two components,, one due to the inherent liquid turbulence 
independent of relative motion of bubbles and the other due to the additional turbulence caused 
by bubble agitation. On the basis of this idea an attea.lpt was made to predict theoretically the 
liquid velocity distribution in a vertical pipe when its ~'oid fraction profile was given. Then, in 
the core region of the flow, the validity of the analysis was confirmed by comparing the 
calculated velocity distributions with the experimental data. 

However, since little consideration was given to the retgion close to the wall in the previous 
study, it was unable to make practical use of the analysis for the prediction of frictional 
pressure gradient. The first objective of this report is then to improve the analysis with special 
emphasis on the description of the wall region so as to be capable of predicting not only the 
liquid velocity distribution over the entire cross section but also the frictional pressure gradient. 

Analytical models for heat transfer mechanism of bubble flow are practically nonexistent. It 
may be expected that, regarding bubble flows, the above-mentfoned treatment for momentum 
transfer is also applicable to heat transfer problem, i.e. the ad'ditional turbulent heat flux is 
assumed to be subdivided into the two components, one due to t'he inherent liquid turbulence 
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and the other caused by bubble agitation. The second objective is then to present an analysis 
which is able to describe the heat transfer process by means of such treatment. The result of 
the analysis leads to theoretical calculation of the liquid temperature distribo.tion and heat 
transfer coefficient of diabatic bubble flows. 

2. MOMENTUM TRANSFER 

2.1 Basic equations 
The present study is concerned with two-dimensional bubble flow, a flo'o7 in a vertical pipe 

or between two parallel flat walls. The coordinate system is shown in fiF, ure 1. The x-axis is 
parallel to the main flow direction, and y- and r-axes are normal to it, me-asured from the wall 
and the channel center respectively. At any position (x, y) of the chanriel, the liquid flow has 
velocity components (uL, vL) and a density pL. Fluctuation of the liquid velocity from the mean 
may be split further into the two parts on the assumption that there are two kind of turbulence 
in the liquid phase independent of and dependent on bubble agitation, designated as (u', v') and 
(u", v") respectively. According to the previous study (Sato & Sek,oguchi 1975), derivation of 
the basic equations pertinent to flow prediction is outlined in this r, aragraph. 

If it is assumed that gas bubbles can be treated as mere void.ages, no momentum transfer 
takes place in the gas phase and thus a knowledge of flow properUes of liquid phase is sufficient 
to describe the flow. When the momentum equation in the x-direction is written in terms of 
mean liquid velocity and fluctuations and furthermore avera.ged with respect to time, rear- 
rangement of the resulting equation allows the shear stress ~- flor liquid phase to be identified as 

~" =/ZL - -p  p [11 

where #L is the viscosity of the liquid and the overbar dfesignates time-averaging. The first term 
on the r.h.s, of [1] represents the effect of viscosity or, the mean flow whereas the second and 
the third terms are the additional stresses arising from the two components of liquid turbulence 
independent of and dependent on bubble agitation. Taking the existence of void into con- 
sideration, the total shear stress at any point can be, written as follows: 

r=(1--a)(gLdf-y-- OLU'V'--pLU"V ") [2] 

where the factor (1-  a) means the probabilit.v of the existence of liquid phase, which can be 
regarded as the time-averaged volume fraction occupied by the liquid at the point. 

It may be convenient to introduce the ~ddy diffusivities ~' and a" for the two additional 
stresses by putting 

, d~L [3a]  
- -  f p L U ~ i )  r = p L  ~ 

F l o w  

] .... ~+,,+u, t 

L / m 
/ z:t = t," + v " x 

X 

Figure 1. Flow system. 
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dUL 
- pLU"V" = pLd ' - -~ .  [3b] 

Substituting [3a] and [3b] into [2] yields 

"r = pL(1 - Ol )( lt L dr" £:' q- ~tt) dUL [4] 
dy 

where VL is the kinematic viscosity of the liquid, and the overbar above the velocity has been 
omitted. For rewriting [4] in the dimensionless form, the following variables are defined; 

uL ÷ = u d u ~  [5] 

y* = f i R  [6] 

r* = z/rw [7] 

where u[ is the friction velocity defined as u* = ~/(~'JPL), Zw the wall shear stress, and R the 
radius of a pipe or the half width of a channel with parallel flat walls. Then, [4] becomes 

dUL + _ I"* 

dy* (1 -a ) (VL+g+g ' ) /Ru?"  [8] 

In the previous study the Reichardt's formula (Reichardt 1951) was used for the one eddy 
diffusivity e', 

~' = ~ (1 - r*2)(1 + 2 r  .2) [9] 
U 

in which r is the mixing length constant, and r* the dimensionless radial distance, r* = dR. 
Equation [9] is known to be valid for the region of r* < 0.9. As for the other eddy diffusivity ~", 
the following formula has been proposed taking account of the "drift" phenomena of liquid 
particles due to relative motion of gas bubbles: 

~" = k~a( -~)Ua,  [10] 

where kl is an empirical constant and da and UB are the mean diameter and relative velocity of 
the bubbles respectively. In the core region at a distance from the wall, [9] and [10] have been 
confirmed to be reasonable by comparing the predicted velocity profile with the experimental 
data. 

Equation [10] is of similar form to the well-known virtual kinematic viscosity of a free 
turbulent flow such as a wake behind a solid body. According to the Prandtl's hypothesis 
(Prandtl 1942), such the virtual kinematic viscosity is expressed as 

= rjbulmax [ll]  

where b is the width of the mixing zone and ulmax the maximum deficit velocity. The reason 
why [10] involves a parameter a (local void fraction) in contrast to [11] is that, in a bubble flow, 
the additional turbulence at a given point may arise from the transit of bubbles there; in other 
words, this parameter corresponds to the probability of the vortex generation. From the form of 
[2] and the above-mentioned similarity between [10] and Ill], it should be emphasized again 
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that the proposed theory is based on the assumption that the turbulence structure of the liquid 
phase consists of superposition of the two independent mechanisms, the wall turbulence and 
the free turbulence due to wakes of bubbles. 

2.2 Shear stress distribution 

If two coaxial fluid cylinders of any radius r and pipe radius R are considered in a vertical 
pipe, the ratio of the shear stress z acting on the circumferential surface at r to the wall shear 
stress zw can be determined from the force balance, 

I01 ) f0 z* = *---- = 1-7- B ar* dr* r* +- ~" ar* dr* 
"/'w 

[12] 

in which B is the dimensionless parameter, B = gR/u .2. 

In a case of flow between two parallel fiat walls, the shear stress ratio becomes 

( fo' ) fo r r*= 1-7-B adr*  r *+ _ a dr* . [131 

The upper and the lower signs in both [12] and [13] should be used for an upward flow and a 
downward flow, respectively. Furthermore, when a horizontal flow between parallel flat walls is 
concerned, the ratio is of course written as r* = r*. 

2.3 Value o f  constant kt 

An experiment has been performed to determine the empirical constant kz of [10]. In the 
previous study k~ was taken to be unity based on a few experimental velocity profiles in a pipe. 
However, there has been room for further discussion on this value because the applied data had 
been obtained from air-water bubbly flows alone in which the effects of both the wall 
turbulence and the bubble agitation were seen to be coexistent and then ~' and ~" should be 
comparable in the basic equation [8]. In order to examine it in more detail and to recommend a 
reliable value, it is expected that bubble flows in the absence of the wall turbulence offer the 
available information about bubble agitation alone. 

It may be reasonable to postulate that, even in a two-phase bubble flow, the wall turbulence 
is suppressed when the liquid Reynolds numbers (based on bulk velocity) is lower than the 
critical value similar to that for single-phase flow; 

jLD < 2300 [14] ReL = (1 - ~ ) i )  L 

where IL is the volumetric flux density of the liquid phase, D the pipe diameter and 6 the mean 
void fraction. Under such a situation, [8] becomes 

dUL + _ " t *  

dy* - (1 - Ct)(VL + d')lRu*" [15] 

In the present experiment 62 wt per cent aqueous glycerol solution was used as the liquid 
phase to attain the above condition [14] even at high bulk liquid velocities enough for the 
velocity profile and the frictional pressure drop to be measured more accurately. Such a 
solution has a kinematic viscosity about ten times of that of pure water at room temperature. 
Air was the gas phase. The test section was a vertical pipe of 26.0 mm i.d. and 5.6 m long. The 
liquid velocity and the void fraction profiles were measured at a downstream distance of 4.3 m 
from an air-liquid mixer by means of a hot-film anemometer and an electrical resistivity probe 
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method, respectively. As for the bubble relative velocity U8 in [10], the terminal velocity of 
bubbles in the still liquid were determined from photographs taken with multiflash exposure 
using an electronic stroboscope. For the further details of the experimental facilities and 
method, the following report in this series (Sato et al. 1981) should be referred. 

The two typical results for the measurement of liquid velocity and void fraction profiles are 
shown in figures 2(a) and 2(b); the data points pertain to the velocity UL and the dashed curve 
does to the void fraction profile, respectively. The flow parameters of these runs are presented 
in table 1. In each figure the predicted velocity profiles are also drawn, calculated from [15] 
together with [10] and [12] taking the empirical constant of [10] to be kl = 1.0, 1.2 and 1.4 in 
order. (The method for the numerical calculation will be presented later in section 4.) Inspection 
of the figures indicates that there are few air bubbles near the wall in such viscous bubble flows, 
and the predicted velocity profile is in good agreement with the experimental data for a value of 
kt = 1 . 2 -  1.4. 

The value of wall shear stress ~', of these flows obtained from the numerical calculation is 
also placed in table 1. From a comparison of the calculated and measured wall shear stresses, it 
is found that the calculated values agree within 4 per cent with the measured value in a case of 
kl = 1.2. Accordingly, the empirical constant kl can be recommended as 1.2 when the terminal 
velocity in the still liquid is applied to the bubble relative velocity Us. 

The curve A in each figure is a velocity profile for laminar flow corresponding to the bulk 
velocity of ./L/(1 - ~), calculated by 

[161 

As can be seen from the figures, this laminar velocity profile deviates from the data points. The 
deviation can be attributed to the existence and agitation of air bubbles. 
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Figure 2. Comparison of the calculated liquid velocity distributions with the experimental data for viscous 
bubble flows, ReL = 1470 and 1546. (Corresponding flow parameters are listed in table 1.) Curves uL: 
calculated velocities by taking kl = 1, 1.2 and 1.4. Curve A: velocity profile for the laminar flow given by 

[16]. Curve a: measured void fraction profile. 

Table 1. Flow parameters for the experiment shown in figure 2 

Case Jg Jg ~ Re t rw,Ex p Tw,Ca I [Pa] Remarks 
[m/s] [m/s] [-| [-1 [Pal kl=l 1.2 1.4 

1 0.50 0.10 0.119 1470 3.00 2.81 3.10 3.47 Fig. 2(a) 

2 0.50 0.15 0.159 1546 3.07 2.59 2.97 3.35 Fig. 2(b) 

Fluids : Air and 62 wt % aqueous glycerol solution. 

Liquid temperature m25.0°C, aB--3.7 n~, UB=0.20 m/s. 
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2.4 Eddy diffusivities /or fully developed turbulent bubble flow 
In this paragraph sufficiently high liquid Reynolds number flows are considered such that 

fully developed turbulent motion occurs at a distance from the wall while a viscous sublayer 
exists in the immediate neughborhood of the wall. Then, the expressions for both the eddy 
diffusivities ~' and ," are examined so as to be able to describe the whole flow field from the 
vicinity of a smooth wall to the pipe center. 

(i) d. In the Prandtrs theory to give the well-known logarithmic velocity distribution 
(Schlichting 1979), the eddy diffusivity is expressed as 

~. = K2y2 ~yy = VKy + [17] 

where r is the mixing length constant (= 0.4) and y+ the dimensionless distance from the wall, 
y÷ = yu*/v. In order to improve [17] for predicting accurately a flow in the region close to the 
smooth wall, van Driest (1956) suggests the following expression; 

= 2 [ -  1 + ~(1 + 4K2y+2{1 - exp ( -  y+/A+)}2)] [18] 

which has a form multiplying the Prandtl's formula [17] by the damping factor {1- 
exp (-y/A)} 2. It is known, however, that [18] is less accurate than the Reichardrs formula[9] in 
the determination of the velocity in the core region. When [9] is rewritten in terms of y÷, it 
becomes 

4 (y+~2 1 + 3 
[19] 

in which R ÷ denotes R ÷ = Ru*/v. It is known that this formula is valid for the core flow region, 
but unfit for the wall region; as can be seen in [19], it tends to close with the Prandtl's 
expression [17] when the wall is approached. 

Since [18] and [19] are excellent in the vicinity of the wall and in the core respectively, the 
combination of both formulas is expected to be suitable for the flow prediction of pipe flows 
over the entire cross section. Thus, the following expression is used for the eddy diffusivity ~' 
of the present study 

4 ( y + ] 2 _ l  + 3 
"={1-exp( -~-7+)}z{1-J~(~-~+)+~\~- - ; ]  ~(~-;+) }VLKY +. [20] 

Figure 3 compares the predicted velocity profiles by use of [20], taking r = 0.4 and A ÷ = 16, 
with the Laufer's experimental data for the flows of Re = 5 x 104 and 5 × 105 in a smooth pipe 
(Laufer 1954). In each case the calculated results are in close agreement with the measure- 
ments, and [20] is therefore considered to be satisfactory for the flow prediction from the wall 
surface to the pipe center. 

(ii) d'. As mentioned in section 2.3, the expression [10] for the eddy diffusivity E" indicating 
bubble agitation has been confirmed to be valid for flow prediction in the core region. However, 
it has been found that [10] gives high value of ~" near the wall and, in other words, it evaluates 
the effect of bubble excessively. For further improvement on [10] it may be reasonable to take 
account of the damping effect of the smooth wall surface on the turbulent motion arising from 
bubble agitation. Accordingly, if the same damping factor applied to E' is considered to be also 
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Figure 3. Comparison of the predicted velocity profile using [20] as to the eddy diffusivity with the 
experimental data of Laufer (1954). ~ ,  Single-phase flow. 

applicable to ~", [10] can be modified as follows: 

[211 

in which A ÷ is taken to be the same value as in [20], A ÷ = 16. And, the empirical constant kl has 
been recommended as kl = 1.2 when the terminal velocity in the still liquid is applied to the 
bubble relative velocity UB. 

The deformation of bubble should be taken into consideration near the wall with regard to 
d~ in [21] since the scale of eddies generated by bubbles must depend on the dimension of 
bubble. From the observation of air bubbles in water flowing in a vertical channel (Sato et al. 
1976), there are two kind of bubbles; sliding bubble just like to slide on the wall and coring 
bubble to flow away from the wall. The shape of a sliding bubble is different from an ellipsoid 
of a coring bubble. Figure 4 illustrates an example of the averaged shapes of sliding bubble at 
bulk water velocity of 1 m/s. A sliding bubble resembles a pear, i.e. a spherical cap at one side 
facing the core region and a cone with round top at the other side converging toward the wall. 
There is a narrow gap between the wall surface and the end of bubble, about 10 -30  ~m 
regardless of water velocity and bubble size. Taking into account this gap and the reduction of 
bubble dimension toward the wall, the following empirical expression for the bubble size is 
recommended as an approximation of dB in [21]: 

dB -'- 

0 .................. 0 < y < 2 0 / ~ m  
4y(dB - y)/dB---20 am < y < dd2 
dB ........... d B / 2 < y < R .  

[22] 

in which dA is the cross-sectional mean diameter of the bubbles. 
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Figure 4. Averaged shapes of sliding bubbles at a bulk water velocity of 1.0 m/s (Sato a al. 1976). 
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3. HEAT TRANSFER 

By analogy with a single-phase flow, it may be acceptable that the above-mentioned 
description for momentum transfer is extended to the heat transfer problem. If temperature 
fluctuation of the liquid phase is assumed to be split into the two independent components in a 
manner similar to the velocity fluctuations, the velocities and temperature can be expressed as 

U =/~ + U'+//" 1 

V=V+V'+V" I 
r f'+r'+r"j. 

[23] 

Introducing [23] into the equation of energy for a two-dimensional system and then forming 
averages with respect to time, it is noticed that the two additional heat fluxes remain, pcpv'T' 

and pcpv"T". Furthermore, when the eddy diffusivities for heat, ~ and ~ ,  are defined by 

,d~ 
pcpv' T' = - pcp¢n-dy 

pcpv"T" = ,,dr" - p c ~  . - ~  , 

[24a1 

[24b] 

the total heat flux involving also the heat conduction term can be written by 

,,,dT 
q = - pcp(a + ~ +  ~Hj-~y [25] 

in which a is the thermal diffusivity. 
Applying this to the present bubble flow problem, the following equation can be obtained, 

provided that gas bubbles can he treated as true voids; 

q = - (1 - a)(aL + ¢'+ ~") a_~_lL [26] 
pLCL ay 

where the subscript L denotes the liquid phase, and both eddy diffusivities eb and ~,~ for heat 
transfer are regarded as to be equal to those for momentum transfer ~' and ~", respectively. 
When the wall heat flux qw and the temperature difference between the wall and the bulk 
(Tw - TLb) are selected for reference, the following parameters can be defined; 

q* = q/qw: dimensionless heat flux [27] 

T* = (TL - TLD/(Tw - TLb): dimensionless temperature [28] 

hrr = qJ(Tw - Tt~): heat transfer coefficient [29] 

Nu = hreD/AL : Nusselt number. [30] 

Making use of these parameters, rearrangement of [26] gives the liquid temperature gradient in 
a dimensionless form; 

dT[  1 . .  q* 
dy* = - 2 r ~ u  (1_ a){ 1 /~' + E"\/ 

[31] 

where PrL is the Prandtl number of the liquid. 
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For both hydrodynamically and thermally developed flow, the dimensionless heat flux q* 
can be written as 

~0 r q, = q = R (1 - a)uLr dr 

qw r fo R (1 - a)uLr dr 
[32] 

for a vertical pipe, and 

fo(1 - a)UL dr 

q* = ~-0 (1 - a)u~ dr 
[331 

for parallel flat walls. Both [32] and [33] can be approximated by 

q* = 1 - y*. [34] 

Equation [31] is the basic equation in determining the liquid temperature distribution, together 
with [20], [21] and [32] (or [34]) for d, d' and q*, respectively. 

In addition, it seems likely that the description of mass transfer in a bubble flow can be 
given simply by replacing the temperature and the heat flux in the above equations with the 
concentration of mass and the mass flux, respectively. 

4. NUMERICAL CALCULATIONS 

4.1 Liquid velocity distribution 
For prescribed pipe diameter D and liquid mass flow rate GL, if the void fraction profile is 

specified, the liquid velocity distribution UL and the frictional pressure gradient APt/Ax can be 
calculated numerically from [8], approximated by a finite difference expression. The iteration 
method is used to construct the velocity field such that the condition of continuity is satisfied, 
as shown in figure 5. The step by step procedure is as follows: 

(1) Assign D, GL and a-profile. 
(2) Assume a value of zw. 

r*-profile from Eq. (12) I 
¢'-profile from Eq. (20) 
¢ "-profile from Eq. (21 

[ 
u2-profile from Eq. (8) I 

n o ~  
ut p r o ~ p / , j x  ] 

Figure 5. Explanatory diagram for the calculations of liquid velocity distribution and frictional pressure 
drop. 
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(3) Determine the corresponding distributions of r*, ~' and d' by use of [12], [20] and [21], 
respectively. 

(4) Calculate the liquid velocity distribution UL + from [8], using a backward finite-difference 
method under the boundary condition of uL + = 0 at y* = 0. 

(5) Obtain the liquid mass flow rate GL.cal. 
(6) Compare GL.cal with the prescribed value of Gv 
(7) Repeat the foregoing process (steps 2-6) with the newly revised wall shear stress until a 

consistent velocity field is obtained. As a result, the corresponding value of frictional pressure 
gradient (or wall shear stress) can also be determined. 

The nodes have to be closely arranged particularly near the wall for a few of them so as to 
be in the viscous sublayer, but may be arranged at a considerable distance apart in the core 
region, e.g. Ay*~0.05. It was found that the satisfactory velocity field usually can be 
determined within 5-8 iterations. 

4.2 Liquid temperature distribution 
If the wall heat flux q, and the bulk liquid temperature TLb are given in addition to the 

velocity field determined in the above procedure, the heat transfer problem can be solved 
numerically. In calculating the liquid temperature distribution, the basic differential equation 
[31] is also approximated by a finite difference expression. And, for example, the iteration 
method shown in figure 6 can be recommended in such a way so as to find out a compatible wall 
temperature. The process is continued until the calculated bulk liquid temperature approaches 
satisfactorily to the prescribed value. As a result, a consistent temperature field and a heat 
transfer coefficient are obtained. 

5. CONCLUSIONS 

A theory for momentum transfer of a two-phase bubble flow in channels has been 
developed, based on the assumption that the two kinds of turbulence are present in the liquid 
phase; inherent wall turbulence independent of bubble relative motion and additional tur- 
bulence caused by bubble agitation. It is then possible to predict theoretically the liquid velocity 
distribution and frictional pressure gradient for a given flow when its void fraction profile is 
known. 

The theory has been extended to heat transfer problem; the additional turbulent heat flux 
has been regarded as to be subdivided further into the two components independent of and 

~ ofile 

-I 
[q *.profile from Eq./32)] 

I 
~T:-profile from Eq. (31)J 

[Tl-profile. Tw. Nu. hr, I 

Figure 6. Explanatory dia~am for the calculations of liquid temperature distribution and heat transfer 
coett~cient. 
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dependent on bubble agitation. The result of the analysis leads to the theoretical calculation of 
liquid temperature distribution and heat transfer coetficient, provided that eddy diffusivity for 
heat transfer is equal to that for the momentum transfer. 

A method for the numerical calculations of the velocity and temperature fields has been 
presented for given pipe diameter, liquid mass flow rate, heat flux and bulk temperature. 

For a flow in the absence of the wall turbulence, ReL < 2300, the agreement between the 
calculated and measured values is quite reasonable. However, to gain confidence in the 
proposed theory there is still a need to make comparisons with available experiments in 
particular for fully developed turbulent bubble flows, both wall turbulence and bubble agitation 
being significant. 
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